Florescence multiplexing is a scientific imaging approach that allows for the observation and analysis of upwards of 30 to 40 elements within a biological sample—each tagged with a different fluorescent dye—in the same experiment. The tags, called fluorophores, are fluorescent chemical compounds that when excited by a light source can emit light of different colors. Through advances in florescence multiplexing, scientists are able to see cells move and change in real time with a clarity never before achieved, thus revolutionizing the way we pursue life sciences research.

Multiplexing is an invaluable technique with applications in microscopy and flow cytometry. In addition to using the latest fluorophores and filters, every lab that engages in multiplexing also requires advanced light sources, such as lasers and light-emitting diodes (LEDs), and detection devices, such as cameras. Both light sources and detectors have experienced a renaissance of improvements that have made multiplexing much easier, more efficient, and more powerful.

Illuminating light sources in multiplexing

“Traditionally you had expensive, high-pressure light sources, such as mercury or xenon arc lamps (as used in cinema projectors), or gas lasers. In both cases, you had to wait for them to warm up, you couldn’t easily control intensity, and they typically required a mechanical shutter,” says Jeremy Graham, CEO, Cairn Research, which manufactures scientific instruments including microscopy systems. “Illumination was monolithic and slow to control. And on the detection side, you had a camera that was extremely expensive and slow.”

“What’s changed is that both light sources and cameras have become much faster, cheaper, and more controllable,” adds Graham. “So now you don’t have to do your experiments sequentially—you can examine your fluorophores in parallel and look at different processes and areas of interest in a sample at the same time … We are focused on providing optical instruments that take advantage of the technological advances to multiplex both illumination sources and spatial detectors, such as CMOS [complementary metal oxide semiconductor] and CCD [charge-coupled device] cameras.”

As lasers have improved in efficiency and utility, they have enabled researchers to harness their power in novel ways for multiplexing. “Lasers allow you to have narrower bands of excitation,” says Scott Phillips, director of sales for Chroma Technology and its subsidiary, 89 North, which manufactures laser-based light engines and light-controlling subsystems for original equipment manufacturers (OEMs). “Now, lasers offer the opportunity to get a lot of photons into a sample, and because [the laser light] is in a very narrow band of wavelength, it leaves space between to capture the emission bands … I can capture more light between excitation bands or put my bands of excitation light closer together and get more colors.”

Optimizing illumination is very important from a cellular health perspective. “You are trying to get the right amount of light in as quickly as possible, especially when studying rapid cell dynamics,” explains Phillips. “It’s a balancing act. You want more light to go into the system, but too many photons can cause damage to the sample or [cause] photobleaching.”

Multimode laser diodes are another example of innovation in fluorescence excitation sources in multiplexing. According to Phillips, they provide a lot of power at a reasonable price. “Historically, lasers above 100 milliwatts were prohibitively expensive, but now we can get a watt of power for almost nothing,” says Phillips. “These lasers are going to change how we illuminate fluorescence microscopy.” High-powered lasers are important in multiplexing. They speed up the acquisition time of the data significantly because of their high proton flux. This allows for shorter exposure times, which are critical for maintaining the high image-acquisition speed necessary for multiplexing.
But lasers aren’t the only light source used in multiplexing. Bulb-based sources with complex filtering have long been used, but have now been widely replaced by LED sources, says Gerard Whoriskey, technical director of United Kingdom-based LED producer CoolLED. He describes the many positive attributes of utilizing LEDs: They have discrete wavelengths that can be used simultaneously or sequentially; they offer full electronic control that gives fast microsecond switching and accurate intensity control; and they are available in a wide range of wavelengths, allowing researchers to image multiple fluorophores at once. Moreover, the brightness of LEDs has greatly improved in the last 10 years. And they have a few advantages over lasers, beyond a lower cost: “LEDs are good for fast imaging because you get the whole widefield picture at once, without the speckling problems that lasers introduce due to their coherence, where the laser interferes with itself,” notes Whoriskey.

Detecting improvements in detectors
Detector technology has also improved dramatically, getting faster and more sensitive. "When I started 10 years ago, detectors were 60% effective," says Phillips. "Now, we have 80–90% quantum efficiency and can capture images at 100 frames per second." Multiple cameras can be used simultaneously, and they have better, more sensitive sensors, "allowing you to do more at the same time," adds Graham.

And yet, “today’s color cameras are not scientifically rigorous devices. Color cameras do not have sufficient sensitivity or the right bit depth when working in this biological domain,” says Jim Sims, research camera sales manager at Hamamatsu Corporation. "If you want a data-rich color image, you use black and white cameras with multiple fluorophores and filters, and then put the images together at the end to create a colorful, multiplexed image that your brain can interpret.”

Challenges now and ahead
Maintaining cell health is always on the minds of multiplexing investigators when it comes to light sources such as lasers. LEDs might be a solution for this concern, says Whoriskey. “The fact that LEDs have accurate intensity control and microsecond switching reduces photobleaching and ensures cell viability,” he notes.

“LEDs can improve your sample integrity more than other light sources, because they can be precisely synched to the camera exposure time, keeping sample illumination to a minimum and thus reducing toxicity to save the cell.”

There is still room for LED sources to improve, of course. “Current LED sources only give you a limited spectral coverage compared to broadband sources. It’s now common to see seven or eight LED channels, but this is still limiting; it would be nice to see 16 channels,” says Whoriskey.

One area of camera improvement still in its nascent stages is the use of simultaneous multi-depth imaging, which provides a three-dimensional image of your sample at a fixed time point. This is especially useful in multiplexing because of the way cells move.

If you don’t get a 3D snapshot of your sample, the cells could migrate and you could lose vital data, notes Graham. "At the moment, to get a 3D image, you have to keep moving the camera over the layers of the sample sequentially, and your item of interest might not be there when you take an image of the next layer," he explains. “There are only a few people working on these cutting-edge devices, but the technology is still in its early days.”

As with any technology, demand is driving innovation in imaging systems. “People still want faster cameras—cameras with larger chips—for microscopes with larger exit pupils. The more the camera can see, the more throughput you get, with more cells,” says Sims. “No one would have thought that camera technology was going to come so far. The quality of data we are getting compared to 20 years ago? Oh my god! We have cameras with 95% quantum efficiency, but now we are hitting a wall. I don’t think it’s going to get better. But then again, I have often been proved wrong, and I am excited that I might be!”

Thanks to innovations in light sources and detection devices, scientists are unlocking the power of multiplexing at an astonishing rate. "I’m really excited about seeing lasers that used to be limited to high-end devices find themselves in lower-end clinical and point-of-care devices," says Phillips. “This will open up the capabilities of multiplexing. We are going to see a huge change in medicine and how tests are performed—they will be done right in the clinic and the results will be faster, specific to you and your genome, and more accurate. There’s a lot of excitement around early cancer and infection detection, and all of this is because of light-based assays.”