This cosmological pure dark matter simulation spans 240 million light years in vertical scale. From left to right the simulation’s periodic boundary conditions are exploited to visualize different representations of the Cosmic Web.

Cosmic Web in the Universe, gravity is the net force that sets matter in motion. Structure of the matter in the Universe is determined by the balance between the density and the dynamics of the Cosmic Web. The Cosmic Web includes voids, clusters of galaxies, galaxy filaments, and galaxy halos. These structures are connected by filaments of matter, forming a complex network of matter distributed throughout the Universe.

Voids Network. The structure of the Universe on large scales is defined by the interaction between matter. Matter is attracted to voids where the density is lower, leading to the formation of galaxy clusters. At the same time, matter in the filaments is more abundant, forming galaxy clusters.

Matter Tracks. This image shows individual tracks of matter from the simulation. As dark matter flows through the structure of the cosmic web, it forms dense regions, such as galaxies, and less dense regions, such as voids.

Dark Matter. Most of the matter in the Universe is dark. We only are able to observe dark matter through its gravitational effects on visible matter. As a result, the structure of the cosmic web is made up of dark matter. The dark matter distribution is shown in the image, with different colors representing different densities.

Galaxies. The visualization shows the galaxy field, where galaxy clusters are located. The structure of the cosmic web is clearly visible, with galaxy clusters and filaments forming a complex network of matter. This network is crucial for understanding the evolution of the Universe and the formation of galaxies.