An Intimate Gathering of Bosons

Keith Burnett

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Science is published by The American Association for the Advancement of Science. Please contact the publisher for further permissions regarding the use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/aaas.html.

Science
©1995 The American Association for the Advancement of Science

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office. For more information on JSTOR contact jstor-info@umich.edu.

©2001 JSTOR
An Intimate Gathering of Bosons

Keith Burnett

All too frequently we hear the term "Holy Grail" breathlessly invoked to describe one goal or another in science. Objections may be raised in almost all cases, on religious grounds if nothing else. I can, however, hold back my objections to using this term for the recent experimental achievements at JLLA of the National Institute of Standards and Technology (NIST) and the University of Colorado in Boulder, Colorado. As reported by Anderson et al. in this issue (1), atomic physicists at JLLA have been able, using the techniques of laser and evaporative cooling, to put thousands of atoms into the same quantum state. In short, they have observed the phenomenon called Bose-Einstein condensation (BEC) in a gas of atoms for the first time. The term Holy Grail seems quite appropriate given the singular importance of this discovery.

The idea of BEC has been around for 70 years. It is a phenomenon that arises from the quantum behavior of assemblies of identical particles (2). There are perhaps two aspects of the quantum nature of matter that most readily come to mind. The first is the way the wave nature of matter gives us quantization, that is, the characteristic energies of quantum systems. This is, after all, the origin of the word quantum. The second and equally critical aspect arises when we consider assemblies of identical particles, electrons in an atom being an example. Electrons belong to the family of Fermi-Dirac particles (fermions for short) and obey the Pauli exclusion principle. This means that only one electron can occupy each quantum state of the atom. This fact explains the periodic table of the elements and the stability of matter. In crude terms, we can think of the electrons not wanting their waves (the de Broglie waves representing the probability of a particle's whereabouts) to overlap. The way fermions effectively repel each other and so prevent more than one from being in any quantum state can even be thought of as a kind of purely quantum pressure—the Fermi pressure—that exists even when there are no ordinary forces present.

There is another family of particles, the bosons (short for Bose-Einstein particles) where the reverse phenomenon occurs: We can put as many of them as we wish in the same state. Bose and Einstein elucidated the nature of this family of particles and it now bears their names (3). Einstein even showed how the quantum nature of Bose particles can force them into the same state without there being interactions present. This is the phenomenon of BEC referred to above, and its presence has been inferred, rather than directly observed, in a great range of phenomena. These include superfluidity, the property of liquid helium to flow through channels without resistance when it is cooled below a critical temperature called the lambda point (4). Condensation is also believed to have been important in the early universe where the Higgs bosons underwent BEC and gave rise to the masses of particles we now observe (5). There are, in fact, a whole host of phenomena that rely on the concept of a condensate for their explanation. Good evidence for there being condensed atoms is also available, at least for the case of liquid helium (see the lecture by P. Sokol in (2)).

So why has it been so hard to see BEC directly? The first issue is the species we have to start with. Unlike the fermion case, for which we have stable elementary particles, such as the electron, the stable bosons we can easily obtain are composite. An example of this is the ordinary hydrogen atom which is made of two fermions, a proton and an electron, stuck together. There are other composite bosons: 4He and most of the alkali atoms whose properties we can conveniently examine.

To see the effects that Einstein predicted, we need to make the de Broglie waves of the atoms overlap. This would not be a problem if it was not for the fact that atoms, apart from helium and spin-polarized hydrogen (hydrogen atoms with all their spins pointing in the same direction), stick together and form molecules long before the Bose effects become apparent. Even if the atoms do not stick together they still interact strongly and obscure the purely quantal effects that arise from the fact that the particles are identical. Therefore, to avoid the effects of strong interactions, we have to keep the atoms as far apart as possible. So what we want is a gas where the particles are very far apart compared with the range of chemical forces but their de Broglie waves still overlap. The size of the de Broglie wave of an atom gets larger as we decrease the energy, so in principle all we have to do is cool a dilute gas of atoms to a low enough temperature. When the de Broglie waves get big enough to overlap, all the atoms will start to go into the same state, generally the lowest energy state of the box we hold them in. Once this starts to happen, the rate of the number of particles in the ground state rises very rapidly. This is fine in principle, but the problem lies in getting sufficiently low temperatures, lower in fact than anyone had reached until the JLLA experiments (1).

The effort to observe Bose condensation in systems where the quantum nature of the transition is not obscured by the complications of strong interactions has been long and hard (2). It has involved heroic efforts by people in several communities. I will focus on the developments in my own field—atomic physics. There have also been reports of the observation of BEC in an excitor gas (6). The first experiments on atoms used spin-polarized hydrogen (7). This is a remarkable substance as it is the only one that remains a gas even at absolute zero. A great deal of important physics has been learned to date in a variety of experiments based on spin-polarized hydrogen (2). These experiments result from the ability to trap spin-polarized hydrogen in a magnetic field and have come very close to the observation of BEC in recent years (8). The gas is cooled in the final stage of the experiment by using a technique called evaporative cooling. In this method the hotter atoms held in the trap are removed, with the ones left behind being cooler and...
The atmospheric abundance of methyl chloroform, CH$_3$CCl$_3$, a compound of only anthropogenic origin, is actually decreasing because of emission reductions in compliance with the United Nations Montreal Protocol and its subsequent amendments. This observation, reported by Prinn and co-workers elsewhere in this issue (1), is based on data from surface-level monitoring stations. The observed trends in methyl chloroform abundance have a few straightforward scientific consequences and substantial policy relevance.

Methyl chloroform is the first substance regulated under the Montreal Protocol that has shown a distinct decrease in atmospheric abundance, not just a decrease in its rate of growth. The abundances of long-lived chlorofluorocarbons (CFCs) have also been affected under the Montreal Protocol. Not only have their growth rates slowed but they are now close to zero (see figure). In the next few decades, the abundance of these long-lived CFCs will also start decreasing. The first message from these findings is clear: Compliance with the Montreal Protocol will decrease the amount of chlorine-containing species in the atmosphere. Because the majority of the chlorine reaching the stratosphere is derived from anthropogenic releases into the atmosphere, the concentration of chlorine in the stratosphere will decrease. Further, because the evidence is conclusive that chlorine, with contributions from bromine-containing compounds, is responsible for the Antarctic ozone “hole” and because the weight of the evidence links anthropogenic chlorine and bromine to the well-documented global ozone depletion, the decrease in atmospheric chlorine levels should lead to a slow recovery in stratospheric ozone levels, if everything else (such as temperature, aerosol levels, and so forth) remains approximately the same.

The abundance of methyl chloroform has already decreased because its atmospheric lifetime is comparable with the time scale over which it has been regulated; hence, the atmospheric response to reduced emissions is relatively prompt. Shorter lived chlorine compounds will decrease in abundance more quickly; hence, the earliest contribution to the recovery of the stratospheric ozone layer will come from the shortest lived compounds. Methyl chloroform is the forerunner in this category. Therefore, the second message associated with the methyl chloroform observations is simply that the atmosphere responds more quickly to reductions in emissions of shorter lived compounds.

This simple and obvious, yet profound, point has several implications. For example, if future work were to suggest that any of these new chemical species have unexpected deleterious effects on the atmosphere, then their emission could be curtailed and atmospheric recovery would be rapid. Furthermore, for equal emissions, a shorter lived species would not build up to as high an abundance as a longer lived molecule would. [For example, even though the emissions of methyl chloroform (600 to 700 kilotons per year) were almost double those of CFC-12 (~400 kilotons per year) during the 1980s, its atmospheric abundance was one-fourth that of CFC-12; see figure.1] The above implications are true for all chemicals released into the atmosphere. Therefore, if a more rapid recovery were deemed desirable, a shorter lived chemical would be more effective in

References and technology
2. A. Griffin, D. W. Smoke, S. Stringari, Eds., Bose-Einstein Condensation (Cambridge University Press, Cambridge, 1996). This is an excellent set of review lectures on most aspects of BEC.