Signs of Intelligible Life

The first article in this two-part series described how even Albert Einstein--acting like a typically uncommunicative scientist--exasperated his wife, Elsa, by ducking her requests for a layman's explanation of his research. But, as also covered in that previous article, you can avoid such spousal discord, as well as develop a powerful career-boosting asset, by honing your ability to communicate with nonscientists. This time, we'll look at a number of institutions that are finding ways to insert plain English into communication between scientists and the public, as well as among scientists of different disciplines.

Academic and Governmental Institutions

Throwing its massive weight behind science communication is the University of Texas, which graduates more Ph.D.s than any other U.S. university. Designed to help transform Ph.D.s into "citizen-scholars" whose broad knowledge is applicable outside of academia, Texas's Professional Development Program (PDP) teaches practical skills, including how to write articles, grant applications, and book proposals; craft public policies; and work in consulting. (See PDP's home page and a Next Wave article on the PDP.)

Over 1000 students from 85 disciplines have taken courses from the PDP, which started in 1996 with three summer courses. Encouraging this veritable stampede toward PDP courses are their alumni, such as Delony Langer, who took a PDP writing course while earning her Ph.D. in chemistry. Langer says that the course allowed her to "stand out from the crowd," and so helped her land her current job as an analytical chemist at 3M. Moreover, Langer is still using the skills she acquired in the PDP course. The concise, nontechnical writing style she learned there is much more appropriate for the weekly management reports she submits at 3M than the formal, academic style she used as a grad student at Texas.

Several other graduate schools, including Notre Dame, South Carolina, North Carolina State, and the University of California, San Francisco, are either considering establishing PDP-like courses or already have done so.

Also supporting science communication is the National Science Foundation (NSF). How? By distributing over $100 million in Integrative Graduate Education and Research Training ( IGERT) awards since 1998 to dozens of institutions that sponsor graduate programs emphasizing communication, teamwork, and multidisciplinary approaches. IGERT was created largely in response to criticism of the misalignment between graduate training and employers' demands from the Committee on Science, Engineering and Public Policy (COSEPUP) of the National Academy of Sciences, National Academy of Engineering, and the Institute of Medicine. (The first COSEPUP report can be read online.) In a 1999 speech, NSF director Rita Colwell described IGERT as part of a "culture change. ... We are making graduate education more useful to students, and more responsive to national needs."

Another fan of plain speech for scientists is the Smithsonian Institution, which now requires its students, postdocs, and research associates to devote at least 20% of their time to explaining their findings in person to the public. Why? Miles Roberts, deputy head of the Smithsonian's Department of Conservation Biology, explains: "Many scientists will write papers that maybe six people will read. But the whole business of explaining their findings to real people has previously been missing from their education. We need to have a group of people out there who care enough about what we do to fund us." The Smithsonian believes that its oral presentations to the masses will help inspire that kind of caring.


Other scientists are hoping to reach the public in print and on the Web. For example, the members of a research group called DZero at the Fermi National Accelerator Laboratory (Fermilab) recently began publishing on the Internet plain language versions of their scholarly papers. These precedent-setting summaries educate journalists and lay readers, who probably wouldn't otherwise know a lepton from a quark, about one of science's most daunting disciplines--particle physics. "The 'gee whiz' relevance of medical discoveries is obvious to the public," says DZero spokesperson Harry Weerts. "Not so in physics where a technical application for a discovery might not materialize for another 200 years. We must explain to the public why our results are important."

Even lofty research journals are now reaching out to wider audiences without dumbing down. In 1997, for example, the editors of Nature condemned the "withering exclusiveness" of their own articles and trumpeted a renewed concern for readability. And in 1992, the editors of Physical Review Letters, the premier publication of particle physics, directed authors to make the first paragraph of each article understandable to physicists of varied specialists. Robert Garisto, an assistant editor at Physical Review Letters, says that his publication's efforts are complicated by the increasing specialization of physics subdisciplines, but are nevertheless yielding "some success."

In addition, the American Institute of Physics, which publishes many physics journals, recently began posting Focus . This cyber publication presents research developments in language understandable to college physics majors, who Focus Editor David Ehrenstein describes as "an underserved market." Focus's audience also includes science writers as well as physics graduate students and researchers in various subdisciplines.


Despite some advances in science communication, many scientists remain stubbornly attached to old ways. Witness, for example, the recent refusal by the American Institute of Physics to adopt even basic uniform quality control standards for articles, such as requirements for clarity and an obviously articulated point. (Those editors apparently haven't internalized the memorable advice offered to communicators by Steve Martin in the movie, Planes, Trains and Automobiles: "Here's a tip: Have a point! It makes it so much more interesting for the listener.")

Additionally, some of the graybeards at Texas still steer students clear of communications courses because they detract from lab time. Rick Cherwitz, associate dean at the University of Texas and director of the PDP program, believes that one way to win support from more of the university's established academics is to crank up the conversation about the importance of communication skills outside the university. At the Smithsonian, Roberts explains that many senior scientists--preoccupied with administrative activities--delegate public education to junior associates. "We're hoping that these junior associates will eventually pass on their appreciation for communication to those that follow them."

Popular Science

There's obviously an avid and appreciative audience for these efforts. One example of the public's voracious scientific curiosity is NASA's Web site, which is one of the Internet's most popular. Additionally, a recent open house at Fermilab drew 10,000 visitors.

Meanwhile, the pool of potential scientific communicators has, so far, barely been tapped. Eighty-one percent of 2000 scientists and engineers who were recently surveyed by the Freedom Forum at Vanderbilt University expressed willingness to invest time in learning how to explain their work to the public. Appealing to eager audiences, an enlarged cadre of visible, articulate scientists could go a long way toward spreading user-friendly science. Elsa Einstein would, no doubt, be pleased.

Useful Links

Follow Science Careers

Search Jobs

Enter keywords, locations or job types to start searching for your new science career.

Top articles in Careers